Getting Started
Complete setup guide, installation instructions, and configuration documentation for PredictiveCare - your AI-powered predictive maintenance system for industrial devices.
Powerful Capabilities
Real-time Monitoring
Track machine health, temperature, and performance metrics in real-time
ML Predictions
Ensemble models predict failures before they occur
Smart Alerts
RAG-powered recommendations for maintenance actions
IoT Integration
Arduino sensors with MQTT protocol for data collection
Before You Begin
Software Requirements
Node.js 18+
For Next.js frontend
Python 3.10+
For ML backend
Arduino IDE
For IoT programming
Hardware Requirements (Optional)
Arduino Board
Uno, Mega, or compatible
DHT22 Sensor
Temperature & humidity
Vibration Sensor
SW-420 or similar
Setup Instructions
Clone Repository
git clone https://github.com/VaibhavK289/predictive_maintenance_for_industrial_devices.git
cd predictive_maintenance_for_industrial_devicesSetup Next.js Frontend
cd predictive-maintenance-frontend
npm installSetup Python Backend
cd ml-backend
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txtTrain ML Models (Optional)
cd ml-backend
python train_models.pyEnvironment Setup
predictive-maintenance-frontend/.env.local
NEXT_PUBLIC_API_URL=http://localhost:8000
NEXT_PUBLIC_WS_URL=ws://localhost:8000/wsml-backend/.env
GOOGLE_API_KEY="your_gemini_api_key"
GROQ_API_KEY="your_groq_api_key"
MODEL_PATH="./models"
DATABASE_URL="sqlite:///./predictions.db"Directory Layout
predictive_maintenance_for_industrial_devices/
├── predictive-maintenance-frontend/ # Next.js 16 Frontend
│ ├── src/
│ │ ├── app/ # App Router pages
│ │ │ ├── dashboard/ # Real-time monitoring
│ │ │ ├── predictions/ # ML predictions view
│ │ │ ├── settings/ # Configuration
│ │ │ └── history/ # Maintenance history
│ │ ├── components/ # React components
│ │ │ ├── ui/ # Shadcn/UI components
│ │ │ ├── charts/ # Data visualizations
│ │ │ └── widgets/ # Dashboard widgets
│ │ └── lib/ # Utilities & API client
│ ├── package.json
│ └── tailwind.config.ts
│
├── ml-backend/ # FastAPI ML Backend
│ ├── models/ # Trained ML models
│ │ ├── xgboost_model.pkl
│ │ ├── lightgbm_model.pkl
│ │ └── catboost_model.pkl
│ ├── config/
│ │ ├── ensemble.py # Ensemble prediction
│ │ ├── rag.py # RAG recommendations
│ │ └── vectordb.py # ChromaDB setup
│ ├── main.py # FastAPI server
│ ├── train_models.py # Model training
│ └── requirements.txt
│
├── arduino/ # IoT Sensor Code
│ ├── sensor_hub.ino # Main Arduino code
│ └── libraries/ # Required libraries
│
├── data/ # Dataset & samples
│ └── predictive_maintenance.csv
│
├── .gitignore
└── README.mdStart the Application
Terminal 1 - Next.js Frontend:
cd predictive-maintenance-frontend
npm run devTerminal 2 - FastAPI Backend:
cd ml-backend
source venv/bin/activate # On Windows: venv\Scripts\activate
uvicorn main:app --host 0.0.0.0 --port 8000 --reloadAccess Points
Next.js Dashboard
http://localhost:3000API Documentation
http://localhost:8000/docsHealth Check
http://localhost:8000/healthReady to Get Started?
Clone the repository, set up your environment, and start monitoring your industrial equipment with AI-powered predictions.
Made with ❤️ by Vaibhav • MIT License